
余导子与余积分及其性质
代瑞香, 刘超
余导子与余积分及其性质
Properties of Coderivations and Cointegrals
DAI Ruixiang, LIU Chao
The definions of coderivations and cointegrations of T-comonads are given in the paper based on the definition and property of coderivations and cointegrations, and the equivalent relation of coseparable comonads, separable forgetful functors and the existence of cointegral from coseparable coring are given according to the algebra module theory.
T-comonads
[1] Mac Lane S.Homologie des anneaux et des modules [M]. Louvain:Colloque de topologie algebrique, 1956.
[2] Godement R.Theorie des faisceaux [M].Paris:Hermann, 1958.
[3] Huber P J.Homotopy theory in general categories [J].Math Ann, 1961(144):361-385.
[4] Barr M, Beck J.Acyclic models and triples [M].New York: Springer-Heidelberg, 1966.
[5] Blackwell R, Kelly G M, Power A J.Two-dimensional monad theory [J].J Pure Appl Algebra, 1989, 59:1-41.
[6] Moerdijk I.Monads on tensor categories [J].J Pure Appl Algebra, 2002, (168):189-208.
[7] 代瑞香, 刘超, 王顶国.缠绕结构与缠绕模[J].石河子大学 学报:自然科学版, 2008, 26(1):106-109.
[8] 王顶国, 代瑞香.单子和余单子的缠绕结构[J].数学学报, 2008, 51(5):927-932.
[9] 代瑞香.余单子的类群元及其性质[J].长春师范学院学报: 自然科学版, 2009, 28(3):11-12.
[10] Bruguieres A, Virelizier A.Hopf Monad [J].Adv Math, 2007, 215(2):679-733.
[11] Gomez-Torrecillas J.Comonad and Galois corings [J].Applied categorical Structure, 2006, 14(5/6):579-598.
[12] Brzezinski T, Wisbauer R.Corings and Comodules[M].London:Cambrige University Press, 2003.
/
〈 |
|
〉 |