催化剂制备方法对高浓度乙炔加氢制乙烯反应的影响

程博贞, 周淑珍, 徐祝, 朱明远,

PDF(1852 KB)
PDF(1852 KB)
石河子大学学报 ›› 2020, Vol. 38 ›› Issue (1) : 1-6. DOI: 10. 13880 /j.cnki.65-1174 /n.2020. 21. 001
化工·材料·食品

催化剂制备方法对高浓度乙炔加氢制乙烯反应的影响

作者信息 +

Study on the effect of catalyst preparation method on ethylene production from high concentration acetylene hydrogenation

Author information +
History +

摘要

为了缓解我国对石油进口的依赖,本文研究采用非石油路线生产乙烯,以煤化工下游产品电石乙炔为原料, 对高浓度乙炔选择性加氢制乙烯,并以加氢反应中常用的金属 Pd 为活性组分,以大比表面积、表面弱酸位点丰富 的 MCM-41 为载体,以 NaBH4、乙二醇( EG) 、H2 为还原剂制备出不同 Pd 颗粒分散状态的系列 Pd 催化剂。活性测 试及表征结果表明: 与其他制备方法相比,EG 还原法制备的催化剂中金属 Pd 颗粒分散良好且粒径均匀,并且对应 的催化活性相对较好。

Abstract

This study used a non-oil route to produce ethylene,designed to alleviate China's dependence on oil imports.The calcium carbide acetylene downstream of the coal chemical industry was used as a raw material to selectively hydrogenate high-concentration acetylene to ethylene.The metal Pd commonly used in hydrogenation process was used as the active component, MCM-41 with large specific surface area and abundant weak acid sites was used as support,and NaBH4,ethylene glycol ( EG) and H2 were used as reducing agents to prepare a series of Pd catalysts with different Pd particle dispersion states.The activity test and characterization results show that compared with other preparation methods,the metal Pd particles in the catalyst prepared by EG reduction method have good dispersion and uniform particle size,and the corresponding catalytic activity is relatively good.

关键词

高浓度乙炔 / 乙炔加氢 / Pd 催化剂 / 催化剂制备方法

Key words

high-concentrationacetylene / acetylenehydrogenation / Pdcatalyst / preparation of catalyst

引用本文

导出引用
程博贞, 周淑珍, 徐祝, 朱明远, . 催化剂制备方法对高浓度乙炔加氢制乙烯反应的影响. 石河子大学学报. 2020, 38(1): 1-6 https://doi.org/10. 13880 /j.cnki.65-1174 /n.2020. 21. 001
CHENG Bozhen , ZHOU Shuzhen , XU Zhu , ZHU Mingyuan , . Study on the effect of catalyst preparation method on ethylene production from high concentration acetylene hydrogenation. Journal of Shihezi University. 2020, 38(1): 1-6 https://doi.org/10. 13880 /j.cnki.65-1174 /n.2020. 21. 001

参考文献

[1] 朱昌海.我国乙烯业快速发展未来可期[J].中国石油 企业,2019( Z1) : 57-60. ZHU C H.China's ethylene industry can develop rapidly in the future[J].Chinese Oil Company,2019( Z1) : 57-60.

[2] 杨志宝,金秀华,肖杰.2017 年国内外乙烯工业发展态 势分析[J].化学工业,2018,36( 4) : 22-26. YANG Z B,JIN X H,XIAO J.Analysis of the development trend of ethylene industry at home and abroad in 2017[J].Chemical Industry,2018,36( 4) : 22-26.

[3] 杨献忠,徐惠丽,郭贞姬.2016 年乙烯生产市场分析及 发展趋势预测[J].化学工业,2017,35( 6) : 35-40. YANG X Z,XU H L,GUO Z J.2016 ethylene production market analysis and development trend forecast[J].Chemical Industry,2017,35( 6) : 35-40.

[4] 梅来宝.电石乙炔化工产品概述[J].辽宁化工,1995 ( 4) : 17-20. MEI L B.Overview of calcium carbide acetylene chemical products[J].Liaoning Chemical,1995( 4) : 17-20.

[5] 江政辉,钟劲光,魏晓芸.姜钟法聚氯乙烯工艺介绍及 前景分析[J].中国氯碱,2014( 1) : 24-26. JIANG Z H,ZHONG J G,WEI X Y. Introduction and prospect analysis of ginger clock process for polyvinyl chloride[J].Chinese Chlor-alkali,2014 ( 1) : 24-26.

[6] 钱伯章.等离子体法煤制乙炔有望取代电石法[J].化 工经济技术信息,2005( 6) : 4. QIANG B Z.Plasma-based coal acetylene is expected to replace the calcium carbide method[J].Chemical Economic and Technical Information,2005 ( 6) : 4.

[7] 尚国隆.电石法乙炔气清净工艺研究[D].青岛: 青岛 科技大学,2018.

[8] 赵令玉.乙炔选择加氢制乙烯催化剂及反应工艺的研 究[D].石河子: 石河子大学,2010[9] M M JOHNSON,D W WALKER,G P NOWACK. Selective hydrogenation catalyst: U. S. Patent 4,404,124[P]. 1983-9-13.

[10] M R RAHIMPOUR,O DEHGHANI,M R GHOLIPOUR, et al. A novel configuration for Pd /Ag /α-Al2O3 catalyst regeneration in the acetylene hydrogenation reactor of a multi feed cracker[J]. Chemical Engineering Journal, 2012,198: 491-502.

[11] 杨春生.乙烯装置的乙炔脱除技术[J].乙烯工业,1996 ( 1) : 27-34. YANG C S. Acetylene removal technology for ethylene plant[J].Ethylene Industry,1996 ( 1) : 27-34.

[12] Maryam Takht RAVANCHI,Maryam Rahimi FARD,Siavash FADAEERAYENI,et al. Effect of calcination conditions on crystalline structure and pore size distribution for a mesoporous alumina[J].Chemical Engineering Communications,2015,202 ( 4) : 493-499.

[13] S KOMEILI,M T RAVANCHI,A TAEB.Influence of calcination parameters on the properties of alumina as a catalyst support[J]. ScientiaIranica.TransactionC,Chemistry, Chemical Engineering,2016,23( 3) : 1128.

[14] Elaheh ESMAEILI,Ali Morad RASHIDI,Yadollah MORTAZAVI,et al. SMFs-supported Pdnanocatalysts in selective acetylene hydrogenation: Pore structure-dependent deactivation mechanism[J]. Journal of Natural Gas Chemistry,2013,22( 5) : 717-725.

[15] William W LONERGAN,Tiefeng WANG,Dionisios G VLACHOS,et al. Effect of oxide support surface area on hydrogenation activity: Pt /Ni bimetallic catalysts supported on low and high surface area Al2O3 and ZrO2[J]. Applied Catalysis A General,2011,408( 1) : 87-95.

[16] Haifeng XIONG,Yuhua ZHANG,Kongyong LIEW,et al.Fischer-Tropschsynthesis: the role of pore size for Co /SBA-15 catalysts[J].Journal of Molecular Catalysis A: Chemical, 2008,295( 1-2) : 68-76.

[17] SONG D,LI J.Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts[J]. Journal of Molecular Catalysis A: Chemical,2006,247( 1-2) : 206- 212.

[18] Yufei HE,Jiaxuan FAN,Junting FENG,et al.Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties[J].Journal of Catalysis,2015( 331) : 118-127.

[19] Marc ARMBRSTER,Malte BEHRENS,Fabrizio CINQUINI, et al.How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry[J].Chem Cat Chem,2012,4( 8) : 1048-1063.

基金

国家自然科学基金项目( 21666033)
PDF(1852 KB)

100

Accesses

0

Citation

Detail

段落导航
相关文章

/