仓储工厂AGV路径规划算法研究

谢婷芮, 李占涛, 周京威, 赵鹏达, 许红涛, 赵永满

PDF(4260 KB)
PDF(4260 KB)
石河子大学学报 ›› 2024, Vol. 42 ›› Issue (6) : 685-691. DOI: 10.13880/j.cnki.65-1174/n.2024.21.022
机械·电气工程

仓储工厂AGV路径规划算法研究

  • 谢婷芮1, 李占涛2, 周京威1, 赵鹏达2, 许红涛2, 赵永满1*
作者信息 +

Research on AGV path planning algorithm for storage plant

  • XIE Tingrui1, LI Zhantao2, ZHOU Jingwei1, ZHAO Pengda2, XU Hongtao2, ZHAO Yongman1*
Author information +
History +

摘要

为解决AGV运输效率较低的问题,提出一种基于改进启发式函数优化搜索领域的同步双向Astar算法。首先,选择合适的启发式函数,采用动态加权法以减少遍历节点过程中产生的冗余节点;其次,采用五邻域搜索的方法,并采用哈希表结合二叉堆对openlist列表进行数据结构优化,增加一对开放列表和关闭列表将单向改为双向搜索以达到缩短搜索时间和提高搜索效率的目的,并针对规划路线拐点较多、路径不平滑的问题,提出采用贝塞尔曲线进行路径平滑的方法;最后,基于Unity3D开发引擎搭建虚拟工厂模型,在虚拟工厂环境中进行实验,证明了该方法在路径长度和搜索时间上的优越性,并采用AHP-模糊综合评价法从安全性、稳定性、通行效率几方面对仓储虚拟工厂AGV路径质量进行评估,验证该仓储模型下AGV路径规划的适用性、高效性和可靠性。研究结果可为工厂仓储物流中AGV物流路径的设计、优化和决策提供可靠的依据。

Abstract

A synchronous bidirectional Astar algorithm based on the optimization of an improved heuristic function in the search field is proposed to address the issue of the low efficiency of AGV trolley transportation in storage plants.Firstly,an appropriate heuristic function is selected,and the dynamic weighting approach is employed to minimize the redundant nodes during the process of traversing nodes.Secondly,the method of five-neighborhood search combined with a hash table and a binary heap is utilized to optimize the data structure of the openlist list,and a pair of openlist and closed list is added to transform the unidirectional search into a bidirectional one,thereby reducing the search time and enhancing the search efficiency.To tackle the problem of numerous inflection points and an unsmooth path,the method of applying the Bessel curve for path smoothing is put forward.Finally,a virtual warehouse factory model was developed using the Unity3D engine.Experiments were conducted within this virtual factory environment to demonstrate the advantages of this approach in terms of path length and search time.Furthermore,the AHP fuzzy comprehensive evaluation method is employed to assess the route quality of AGV trolleys within a virtual warehouse factory.This evaluation considers multiple perspectives,including safety,stability,and traffic efficiency.The aim is to verify the applicability,efficiency,and reliability of AGV trolley path planning under this storage model.Thus,it provides a reliable basis for the design,optimization,and decision-making of AGV logistics paths in factory warehouse logistics.

关键词

AGV路径规划 / Astar算法 / 虚拟工厂 / 路径评价

Key words

AGV path planning / Astar algorithm / virtual factory / path evaluation

引用本文

导出引用
谢婷芮, 李占涛, 周京威, 赵鹏达, 许红涛, 赵永满. 仓储工厂AGV路径规划算法研究. 石河子大学学报. 2024, 42(6): 685-691 https://doi.org/10.13880/j.cnki.65-1174/n.2024.21.022
XIE Tingrui, LI Zhantao, ZHOU Jingwei, ZHAO Pengda, XU Hongtao, ZHAO Yongman. Research on AGV path planning algorithm for storage plant. Journal of Shihezi University. 2024, 42(6): 685-691 https://doi.org/10.13880/j.cnki.65-1174/n.2024.21.022

参考文献

[1] 卞永明, 马逍阳, 高飞, 等.基于改进A-Star算法的AGV全局路径规划[J].机电一体化,2019,25:9-15.
BIAN Y M, MA X Y, GAO F, et al. AGV global path planning based on improved A-star algorithm[J]. Mechatronics, 2019, 25:9-15.
[2] 牟德君, 初鹏祥. 基于改进A*算法的仓储环境AGV路径规划[J]. 自动化与仪表, 2022, 37(4):40-45.
MOU D J, CHU P X. AGV path planning in warehouse environment based on improved A* algorithm[J]. Automation & Instrumentation, 2022, 37(4):40-45.
[3] 刘生伟, 马钺, 孟树峰, 等. 改进A*算法的AGV路径规划[J]. 计算机应用, 2019, 39(S2):41-44.
LIU S W, MA Y, MENG S F, et al. AGV path planning with improved A* algorithm[J]. Journal of Computer Applications, 2019, 39(S2):41-44.
[4] 杨芳清, 刘吉成. 融合改进A*算法与动态窗口法的移动机器人路径规划[J]. 工业控制计算机, 2021, 34(5):106-108,112.
YANG F Q, LIU J C. Path planning of mobile robot based on improved A* algorithm and dynamic window method[J]. Industrial Control Computer, 2021, 34(5):106-108,112.
[5] 李印宏. 基于改进蚁群算法的移动机器人路径规划研究[D]. 曲阜:曲阜师范大学, 2021.
[6] 张晓莹. 多无人节点协同路径规划技术研究[D]. 杭州:杭州电子科技大学, 2023.
[7] 郑辉. 一种基于谱分析的三维寻径启发式函数[D]. 杭州:浙江大学, 2016.
[8] 陈霏. 面向仓储物流的AMR机器人视觉导航技术研究[D]. 太原:中北大学, 2023.
[9] 陈晓冬, 王福威. 基于改进A*算法的AGV路径规划[J]. 计算机系统应用, 2023, 32(3):180-185.
CHEN X D, WANG F W. AGV path planning based on improved A* algorithm[J]. Applications of Computer Systems, 2019, 32(3):180-185.
[10] 王洋.基于动态五邻域搜索的改进Astar算法路径规划研究[J].中国新技术新产品,2024(7):1-4.
WANG Y.Path planning of improved astar algorithm based on dynamic five-neighborhood search[J].China New Technology and New Products,2024(7):1-4.
[11] 杨峰,李凤霞,余宏亮,等.一种基于分布式哈希表的混合对等发现算法[J].软件学报,2007,18(3):714-721.
YANG F,LI F X,YU H L,et al.A hybrid peer-to-peer discovery algorithm based on distributed hash table[J].Journal of Software,2007,18(3):714-721.
[12] 谢春丽,高胜寒,孙学志.融合改进A*算法和贝塞尔曲线优化的路径规划算法[J].重庆理工大学学报(自然科学版),2022,36(7):177-187.
XIE C L,GAO S H,SUN X Z.Path planning algorithm combining improved A* algorithm and bessel curve optimization[J].Journal of Chongqing University of Technology (Natural Science Edition),2022,36(7):177-187.
[13] 李翰,张洪海,许卫卫,等.物流无人机路径规划及评估方法研究[J].信息技术,2020,44(1):1-6.
LI H,ZHANG H H,XU W W,et al.Research on path planning and evaluation method of logistics UAV[J].Information Technology,2019,44(1):1-6.
[14] 刘志海,高龙,韩文钰,等.基于改进遗传算法的移动机器人路径规划研究[J].制造业自动化,2024,46(5):26-30.
LIU Z H,GAO L,HAN W Y,et al.Research on path planning of mobile robot based on improved genetic algorithm[J].Manufacturing Automation,2019,46(5):26-30.
[15] 徐梦颖,王娇娇,刘宝,等.基于改进遗传算法的机器人路径规划[J].石河子大学学报(自然科学版),2021,39(3):391-396.
XU M Y,WANG J J,LIU B,et al.Robot path planning based on improved genetic algorithm[J].Journal of Shihezi University (Natural Science),2021,39(3):391-396.
[16] REAIDY P J,GUNASEKARAN A,SPALANZANI A.Bottom-up approach based on internet of things for order fulfillment in a collaborative warehousing environment[J].International Journal of Production Economics,2015,159:29-40.
[17] BRIGHT A G,PONIS S T.Introducing gamification in the AR-enhanced order picking process: A proposed approach[J].Logistics,2021,5(1):14.
[18] MCGINNIS R S,MCGINNIS E W.Advancing digital medicine with wearables in the wild[J].Sensors,2022,22(12):4576.
[19] QORBANI H S,ARYA A,NOWLAN N,et al.Simulation and Assessment of Safety Procedure in an Immersive Virtual Reality (IVR) Laboratory[C]//Proceedings of the 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).New York: IEEE,2021: 589-590.
[20] BRUNI R,PICCAROZZI M.Industry 4.0 enablers in retailing: A literature review[J].International Journal of Retail & Distribution Management,2022,50(7):816-838.
[21] LEHMAN S M,ELEZOVIKJ S,LING H,et al.ARCHIE++: A cloud-enabled framework for conducting AR system testing in the wild[J].IEEE Transactions on Visualization and Computer Graphics,2023,29(4):2102-2116.
[22] SHEU J B,CHOI T M.Can we work more safely and healthily with robot partners? A human-friendly robot-human-coordinated order fulfillment scheme[J].Production and Operations Management,2023,32(3):794-812.

基金

新疆生产建设兵团科技计划项目(2023AB081,2024AB062)
PDF(4260 KB)

81

Accesses

0

Citation

Detail

段落导航
相关文章

/